SOI CMOS For High Temperature Analog and Mixed-Signal Applications

NASA/JPL Workshop on Extreme Environments Technologies for Space Exploration

Bruce Ohme
Honeywell Defense & Space Electronics Systems
Plymouth, Minnesota
bruce.ohme@honeywell.com

Outline

- Honeywell DSES Markets and Products
- Markets and applications for high temperature electronics
- SOI technology for high temperature electronics (200°C to 300°C)
 - Advantages/Features for HT analog/mixed-signal applications
 - High temperature issues and mitigation approaches
 - SOI design considerations for high temp.
- Honeywell commercial high-temp. status
- Technology trends and program opportunities
- Summary

MARKETS AND PRODUCTS

Microelectronic Solutions

Integrated Sensors & Control Electronics

Aerospace

Commercial

High Temp

Sensors

Markets

- Space Systems
- Tactical and Strategic Missiles
- Tactical Aircraft
- Industrial
- Medical
- Avionics
- Wireless
- Info Security

- Oil Service Industry
- Industrial Controls
- Gas Turbine Controls
- Automotive

- Industrial Controls
- Instrumentation
- Presence Detection
- Position Detection

Products

- Gate Arrays
- SRAM & ROM
- · Bus Interface IC's
- Nonvolatile Memory
- Custom Digital and Mixed Signal ASICs
- Low Power ASICs
- Nonvolatile Memory
- Digital and Analog ICs for Distributed Control
- Pressure Transducers
- Magnetic Sensors
- Pressure Transducers
- Pressure Sensors
- Magnetometers
- Magnetic Sensors

Customers

· OEM's

· OEM's

- · OEM's
- End Users

- OEM's
- End Users

Complete High Temperature Solutions For

Pressure Transducers

HTMOS™ Electronics And Multi-Chip Modules

Magnetic Sensors

High-temp. Market Segments

Down-hole (fossil fuel/geothermal)

- "Short life" applications
 - Measurement while drilling, data-logging
- Long-life applications (permanent installation)
 - Production management, well completions
- Temperature needs:
 - Fossil fuel: historically 175°C peak, but trending to 250°C as wells go deeper
 - Geothermal: 300 °C (and higher?)

Aerospace

- Distributed control systems
- Turbine engine sensor and control systems
- Temperature:
 - Continuum: Most applications at 200 °C or lower. A few higher than 400 °C.
 - Operating temperatures often not as high. Peak temperatures often just after engine is turned off ("soak back")

High-temp. Market Segments

Automotive

- Engine compartment, exhaust, braking systems
- High volume, competitive, very cost sensitive
- Not many applications above 150°C to 175°C

Industrial

- Process controls (sensors and signal conditioning)
- Motor controls (high power density)

SILICON ON INSULATOR TECHNOLOGY

Buried SiO₂ Insulating Layer Provides The Following Benefits

- 30% To 40% Faster Circuits
- 30% To 40% Lower Power
- Better Isolation For Mixed Signal ASICs
- High Reliability No latch-up
- High Temperature Operation : 225°C continuous and excursions to 300°C
- Improved Sensor Accuracy And Stability

Bulk Vs. SOI Cross-Section

Bulk

SOI

Honeywell High-temp. SOI Process Options

	"10V Linear" Process	SOI4 High Temp. Process
Gate Oxide	350 angstroms	150 angstroms
Max. Gate Ox. Voltage	10V	5v
Target Vtn/Vtp	1.2V / -1.2V	1.2V / -1.3V
Min transistor length	1.2 microns	0.8 microns
# of metal layers	2	3 or 4
Top Si Thickness	0.3 microns	0.3 microns
Buried Oxide	1.0 micron	0.4 microns
Partially/Fully depleted	Partially depleted	Partially depleted
Lithography	1X	5X
DMOS option	Yes: >30V VDS	Yes: >20V VDS
CrSiN resistors	Yes	Yes
Linear Cap Implant	Yes	Yes
Laser trim fuse links	Yes	Yes
Lateral PNP VREF	Yes	Yes

SOI4 High-Temp. is identical to radiation-hardened SOI4 except for target Vt and non-hardened oxides

Honeywell

SOI vs. Bulk Leakage and Delay (1.2μ Process)

SOI has >10x less leakage than Bulk

Ring Osc. Performance – 1.8V Benchmarking

Gate Delay Predictions

SOI-7 Nominal Model versus 1.8V bulk CMOS

The SOI-7 performance predictions are better than the 1.8V industry benchmarks over the full temperature range of -55C to +125C.

Performance over voltage is better than 1.8V industry benchmarks. A 18% increase in gate delay is predicted when the supply voltage is reduced from 1.8 to 1.5 volts

SOI-7 provides better performance than 1.8V industry benchmarks because of the intrinsic speed advantage of SOI

SOI CMOS is a Good Substrate Solution for Mixed Signal Applications

SOI Advantages:

- 10 –30 dB less coupling between analog and digital circuits measured at 2.5 GHz
- 20 30 % Lower Power Circuits Bulk CMOS
- Radiation Hardened

Capacitor / Resistor Cross-section

- N+ poly to N+ Si capacitor
 - Special implant for capacitor bottom plate
 - 700Å oxide dielectric, 0.5fF per sq. micron
 - Less than 150ppm/V, 20ppm/°C
- Laser-trimmable CrSi thin-film resistors
 - Direct 1st metal contactless interconnect
 - 2500Ω/sq, less than 300ppm/°C

Linear Capacitor Coefficients

Voltage Coefficient <150 ppm/V

Capacitance vs. Temperature (@+5V)

Temperature Coefficient <18 ppm/°C

Thin Film Resistor Characteristics

- Low risk, mature technology
- High sheet rho (2500 Ω /sq.), large value resistors possible
- Low TCR (±300ppm/°C max, ±200ppm/°C typ.)
- Good matching (0.1% ratio match, untrimmed*)
- Less than 5ppm/°C typical TCR match
- Stability, high temp. capability demonstrated (250°C)

Thin-Film Resistor Stability

Resistance Change From Time=0. Measured At 200°C After 1700 Hours Biased @ 20V, 250°C

SOI4 Nch DMOS Layout Approach

Increased Drain-Source Voltage

Reduce drain conductance in saturation (high DC voltage gain)

Dimension A

 Gate Length (source edge defined by poly, drain edge by field cut).

Dimension B

 Drain Extension (Fieldcut edge to Fieldcut edge).

Dimension C

 Drain extension under Gate Oxide (Dmosdx edge to source fieldcut edge).

Dimension D

 Nwell / Pwell overlap (from Dmosdx layer by sizing/mask generation.

SOI4 Nch DMOS Transistor I-V Characteristic

SOI4 Pch DMOS Transistor I-V Characteristic

High-temp. Issues & Mitigation Approaches

Junction Leakage

- Junction leakage doubles every 10°C (above ≈170°C)
- Use SOI processes full oxide isolation

Sub-threshold transistor leakage

- Threshold voltage has a negative temperature coefficient typically 2mV/°C. Standard SOI processes leak badly above 200°C due to subthreshold conduction.
- Re-target room-temp. Vt's to compensate
 - Trade-off vs. drive current, voltage head-room.
 - One reason why 5V process persists for HT vs. 3.3, 2.5, 1.8.

Electro-migration

- Aluminum inter-connect migration exponentially related to temperature
- Design to more conservative design rules
 - Wider metal traces / more vias and contacts
 - OR reduce the operating frequency (digital circuits)
- OR develop alternative inter-connect metalization (e.g., Tungsten)

Electro-Migration Lifetime vs. Current Density

High-temp. Issues & Mitigation Approaches

Reduced mobility vs. Temperature

- Reduces digital drive currents, analog gain (gm)
- Use larger devices for digital logic (or de-rate speed at HT)
- Temperature compensate bias currents to stabliize gain vs. temp. (increases power consumption at high temp.)

Bias voltage drift with temperature

- Mobility and Vt drift with temperature may cause wide range of bias voltage variation, eating into common-mode input range or output range
- Use "Zero Temperature Coefficient" biasing
 - Play Vt shift against mobility shift to stabilize bias voltages
 - Requires good models over temp.

Zero Temperature Coeffiicient Biasing

Circuit Applications

- Current Source
- Current Mirrors
- Differential Inputs

15/10 N-channel

SOI Issues

Self-heating

- SOI thermally isolates devices, resulting in localized selfheating when the power density is too high.
 - Impacts high-speed, high-drive analog/digital, output drivers
 - Mitigate by designing for lower current density.
 - Intelligent system partitioning
 - SiC power devices are inherently more capable than Soi

Floating Body Effects

- Fully-depleted SOI has no body tie
 - Subject to "kink" effects, problems with total dose environments
- Partially-depleted SOI leaves option to connect to the body-tie
 - "Floating body" option has advantages for SOME applications, but is not a good option for total dose environments or analog
 - Solution is to make explicit body connections.
 - PD-SOI body connections are resistive, and can lead to parasitic bipolar effects.
 - Multiple parameters involved, each with its own temp. variation
 - Net impacts not much worse at high temp. than conventional temp
 - Solution is characterization to develop max. device width rules.

Body Tie Options: Source-to-Body Tied MOSFETS

M1

Note: Body tie options and the Area "cost" may vary widely among SOI manufacturers

Body Tie Options for "4-terminal" MOSFETS

SOI Issues

Back-gate Transistors

- The buried oxide forms a "back-gate" transistor that may turn on depending on how the wafer substrate is biased relative to the top silicon
 - Back-gate transistor turn-on voltage varies significantly with temperature
 - Typically connect substrate to the most negative potential on-chip
 - This phenomenon limits the useful operating range for Pch DMOS transistors
 - This is one reason to use thicker buried oxide

Honeywell High Temperature SOI Circuits/Devices

Deep Trek

HTMOS™ Standard Electronic Products

- Available Now!
- Family Of SOI* CMOS Integrated Circuits For Creating Data Acquisition & Instrumentation Subsystems
 - Op Amps
 - Voltage References
 - Voltage Regulators
 - Micro Controller
 - SRAM And ROM
 - Digital Logic Arrays
- 2 Million Device Hours Worth Of Life Test Data Demonstrate Reliable Operation At 225°C

Current HTMOS Standard Electronic Products

Product #	Function	Die	SCP	
HT1104	Quad Op Amp	Now	Now	
HT1204	Quad Switch	Now	Now	
HT506	16:1 Analog Mux	Now	Now	
HT507	8:2 Analog Mux	Now	Now	
HT6256	256K Bit SRAM	Now	Now	
HT83C51	8 Bit Micro Controller	Now	Now	
HT2080	80K Gate Digital Array	Now*	Now*	
HT2160	160K Gate Digital Array	Now*	Now*	
HTCCG	Crystal Clock Generator	Now	Now	
HTPLREG	+5, +10 Or +15V Voltage Regulator	Now	Now	
HT574	12 Bit A/D Converter	Now	Now	
HTANFET	Power FET	Now	Now	
HT6656	256K Bit ROM	Now	Now	

Products in Red are 5V, 0.8μ SOI4 High Temp. Process Products in Black are 1.2μ 10V-Linear High Temp. Process

SOI Example Capability vs. Temperature

10-Transistor OP-Amp Results

Data From Lot 16619-02, +/-2.5V **Supplies**

Sample #4	25°C	300°C
Isupply	224 μΑ	198 μΑ
Voffset	-5.3 mV	-4.55 mV
Input Bias Current*	-0.019 nA	17.3 nA
loffset	0.028 nA	23.1 nA
Gain	96.2 dB	87.6 dB
CMRR	75.0 dB	77.7 dB
PSRR*	65.2 dB	72.3 dB
Input Range	-1.2V to 2.1V	-1.3V to 2.0V

^{*} Worst Case of plus/minus bias current and power-supply rejection Data collected for 20 pF capacitive load

HT574 High Temp. 12-bit A/D

PARAMETER	GOAL	STATUS
Operating Temperature	-55°C to 225°C	Verified (A/D
		operation to 275°C)
Integral Non-Linearity	±1LSB	±1.5 LSB
Diff. Non-Linearity	±1LSB	±1 LSB, Monotonic
Offset Error	±2LSB's	+1 LSB (typical)
F.S. Calibration Error	0.8 % of FS (typical)	Verified
PSRR (10V ±1V)	±2 LSBs	±1LSB Verified
Operating Currents:	2mA/200μA	1.3mA/0.5mA (typical)
VDD/Vlogic (10V/5V)		
Conversion cycle	<32 μsec	30μsec (typical)
Conversion cycle		<3%
change, -55°C to 225°C		
Vref Out @ 25°C	$5V \pm 0.025V$	Verified
Vref Out drift w/Temp.	±25mV (full range)	Verified
Vref Out drift/time	±3mV/1000 hrs	Verified
Vref Out regulation	<1mV/Volt	Verified

All devices receive 2-week dynamic burn-in @225°C prior to testing

HTPLREG High Temp. Linear Regulator

HTPLREG10 DESIGN PARAMETERS

Specified Operating -55°C to 225°C

Temperature Rarnge: (Functional with reduced

performance to 300°C)

Input Voltage: 8V to 30V

Output Voltage: 5V*, 10V*, 15V*

Output Current =0.5 amps (continuous)

Line Regulation: $\pm 0.3\%$ Load Regulation: $\pm 0.5\%$

Standby Current: <1 mA (no load)
Current Limiting: Configurable*

Power Limiting: Configurable**

Noise (10Hz. to 10KHz): <2mV RMS

Input to Output 3V to 18V

Differential Voltage:

External Shutdown Input: Provided

*Configurable by wirebond at package assembly.

^{**}Configurable by laser-trim at wafer level.

HTPLREG Bandgap VREF Block Diagram

PNP Parameters Vs. "Gate" Connection

HTPLREG Output Stability

Pos reg lot 2B88 samples: Drift vs. Time @ 225°C Vin=30v, Vout=5V

Note: 0.01% = 0.5mV. Test started after burnin.

HTPLREG Output vs. Temp.

High Temp. Supply-chain Issues

- SOI (Silicon On Insulator) Technology Is Key For High-temp applications
 - Commercially available SOI processes may not be suitable for high temp (>200°C) due to sub-threshold leakage and/or total dose response
- High Temperature Business Is Intrinsically Low-volume
 - How do we sustain commercial viability?
- Electronic Component Availability Is A Function Of The Economics For Maintaining The Manufacturing Technology
 - Commercial electronic processes are driven to smaller geometries and lower voltages by high-volume application
- Need complete electronics solution: Analog, Digital, Passives

Honeywell High Temp. Strategy

- Leverage Honeywell / U.S. DoD* support of advanced SOI technology developed for Aerospace/Defense applications
- Develop High-Temp. solutions that are derivatives of those SOI Processes, Products, and Development Platforms used to meet U.S. DoD military/strategic requirements
- Win U.S. Dept. of Energy Deep Trek program funding to accomplish this (Q3 '03)
- No new development in "10V Linear" SOI process

*DoD = <u>D</u>epartment <u>O</u>f <u>D</u>efense

U.S. DoD Synergy

- Honeywell Has Developed 125°C Mixed-Signal ASIC Capability With U.S. Government Support (Radhard SOI4)
 - SOI 5V, 0.8μ Process For Analog As Well As Digital
 - Radiation Hardened For Space Applications
 - DoD Applications Will Sustain This Capability
- Mask Compatible SOI 5V, 0.8μ Process Technology Is Already Used For High-Temp. Digital Products (High Temp. SOI4)
- With Minor Modifications, The Rad-hard Space Process Can Be Applied To Commercial Down-hole
 - Adjust Transistor Threshold Parameters
 - Remove Key Radiation-hardening Steps
 - Extend Models and Libraries From 125C to 225C
 - Adds HT Analog/Mixed-Signal Capability In 5V, 0.8μ SOI
- Products and Design Libraries Developed For Space Market Can Be Adapted To High-Temp / Down-hole

Radhard 8-bit ADC Analog Macrocell

PARAMETER	GOAL	STATUS*
Operating Temperature	-55°C to +125°C	Tested @ 25°C and 125°C
Integral Non-Linearity	±0.5LSB	±1LSB
Diff. Non Linearity	±0.5LSB	±1LSB
Offset Error	±1LSB (10mV)	3-8mV
FS Calibration Error	0.8% of FS (typical)	0.6%
Conversion Cycle	<25µsec	Tested @ 30μsec**
Vref Out @ 25°C	$2.56V \pm 0.10V$	$2.56V \pm 0.010V$
Vref Out Drift w/Temp	±15mV	±5mV
Vref Out Drift w/time	±3mv/1000 hours	Not Tested
Vref Out Drift w/1MRad	TBD	-7mV after 1MRad
Vref Out Regulation	1mV/Volt	1mV/Volt

^{*}Initial Wafer test results only, no package testing was done yet. Results should improve at package level testing.

^{**}Oscillator was untrimmed. Can be trimmed from 10µsec to 70µsec.

8-Bit ADC Macrocell placed / Routed on Honeywell HX2040 Gate Array Underlayers

- Successive-approximation converter with 8-bit Capacitor-DAC
- Built in oscillator and 2.56V buffered Voltage Reference
- Eight input multiplexer
- Separated supplies: 5V analog and 5V digital
- Analog macro cell for use with SOI-4 Gate Arrays

HW/DOE Deep-Trek Program Goals

- Operation to at least 225°C long-term, with a goal for transient excursions to 300°C
- Sustainable source for reliable down-hole micro-electronics (Silicon-on-Insulator CMOS)
 - Based on modified RH-SOI4 5V Mixed-Signal CMOS process,
- Develop key building blocks for down-hole systems
- Establish foundation for future HT development
 - Design platforms (toolkits and libraries)
- Reduce the Cost/Schedule/Risk for HT down-hole development
 - Demonstrated capabilities
 - Identify, share and support suppliers of high-temp. passives.

Summary

- SOI CMOS is widely recognized as the most viable near-term solution for extending operating temperature for integrated circuits above 175°C
- SOI CMOS is capable for analog/mixed-signal signal conditioning and control applications
- For high power-density actuator/driver applications
 SOI is at a disadvantage relative to SiC
- Minor modifications to SOI processes are needed to extend temperature range for complex IC's beyond 200°C
- Complete solutions are required: Analog/mixedsignal in addition to digital
- Exploiting synergy between SOI for rad-hard DoD and SOI for high-temp. down-hole applications will benefit both user communities